Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E313-E318, 2017.
Article in Chinese | WPRIM | ID: wpr-803881

ABSTRACT

Objective To determine the hyperelastic constitutive equation of biological soft tissues and study the mechanical responses during the clamping process of biological tissues. Methods The destructive uniaxial tensile test was performed on fresh porcine liver and the uniaxial tension experiment was simulated in ABAQUS. The hyperelastic constitutive equation of porcine liver was determined by comparing the simulation results with the experimental data. Based on this equation, the sharp teeth-shaped and wave-shaped chucks were used to simulate the clamping process. Results The simulation results of the tensile experiment with the 4th-order Ogden model were in good agreement with the experimental data. The results of tissue clamping simulation showed that stress concentration was more likely to occur when the sharp teeth-shaped chuck was adopted. Conclusions The 4th-order Ogden model can be used to describe the hyperelasticity of porcine liver and determine the relevant para-meters. Using the sharp-shaped chuck is more likely to cause tissue clamping damage, and there is a linear relationship between tissue stress and clamping feed distance. These research findings provide references for the design of surgical clamp.

SELECTION OF CITATIONS
SEARCH DETAIL